Nanomaterial achieves dual functionality—high-performance energy storage and efficient pollutant degradation

Researchers from Shinshu University developed a low-cost nanocomposite by embedding bimetallic and trimetallic molybdates into nitrogen-, boron-, and fluorine-doped hollow carbon nanofibers. This material demonstrated excellent electrochemical performance for supercapacitors, with high capacitance and long-term stability, as well as strong catalytic efficiency in degrading 4-nitrophenol, a common industrial pollutant.

May 21, 2025 - 19:52
 0
Researchers from Shinshu University developed a low-cost nanocomposite by embedding bimetallic and trimetallic molybdates into nitrogen-, boron-, and fluorine-doped hollow carbon nanofibers. This material demonstrated excellent electrochemical performance for supercapacitors, with high capacitance and long-term stability, as well as strong catalytic efficiency in degrading 4-nitrophenol, a common industrial pollutant.