Self-assembled dodecahedral nanostructure features 60 metal ions and peptide ligands

Controlling the topology and structure of entangled molecular strands is a key challenge in molecular engineering, particularly when attempting to create large nanostructures that mimic biological systems. Examples found in nature, such as virus capsids and cargo proteins, demonstrate the remarkable potential of such architectures. However, methods for constructing large hollow nanostructures with precise geometric control have remained elusive—until now.

May 9, 2025 - 16:46
 0
Self-assembled dodecahedral nanostructure features 60 metal ions and peptide ligands
Controlling the topology and structure of entangled molecular strands is a key challenge in molecular engineering, particularly when attempting to create large nanostructures that mimic biological systems. Examples found in nature, such as virus capsids and cargo proteins, demonstrate the remarkable potential of such architectures. However, methods for constructing large hollow nanostructures with precise geometric control have remained elusive—until now.