Методы геопространственного моделирования стали важным инструментом экологического мониторинга — с его помощью управляют рисками для окружающей среды и отслеживают угрозы стихийных бедствий. Все большее применение в геопространственных исследованиях находит машинное обучение. Исследователи публикуют множество статей, в которых сообщают об улучшении моделей, решении фундаментальных задач и новых подходах, в том числе в естественных науках. Однако часто такие публикации страдают от методологических ошибок в основном из-за ограничений, присущих машинному обучению. Группа ученых из Сколтеха и Института AIRI провела анализ научной литературы, выявив типичные проблемы и предлагаемые решения.