Resize in PyTorch

Buy Me a Coffee☕ *Memos: My post explains OxfordIIITPet(). Resize() can resize zero or more images as shown below: *Memos: The 1st argument for initialization is size(Required-Type:int or tuple/list(int)): *Memos: It's [width, height]. It must be 1

Jan 19, 2025 - 14:24
Resize in PyTorch

Buy Me a Coffee

*Memos:

Resize() can resize zero or more images as shown below:

*Memos:

  • The 1st argument for initialization is size(Required-Type:int or tuple/list(int)): *Memos:
    • It's [width, height].
    • It must be 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int`)) is applied to a smaller image's width or height edge, then the other larger width or height edge is also resized: *Memos:
    • If an image width is smaller than its height, it's [size, size * width / height].
    • If an image width is larger than its height, it's [size * width / height , size].
    • If an image width is equal to its height, it's [size, size].
  • The 2nd argument for initialization is interpolation(Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode).
  • The 3rd argument for initialization is max_size(Optional-Default:None-Type:int): *Memos:
    • It's only supported if size is a single value(int or tuple/list(int`)).
    • After size is applied if a larger image's width or height edge exceeds it, it's applied to a larger image's width or height edge to limit the image size, then the other smaller image's width or height edge also becomes smaller than before.
  • The 4th argument for initialization is antialias(Optional-Default:True-Type:bool). *Even if setting False to it, it's always True if interpolation is InterpolationMode.BILINEAR or InterpolationMode.BICUBIC.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int, float, complex or bool)): *Memos:
    • A tensor must be the 3D or more D tensor of one or more elements.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Resize
from torchvision.transforms.functional import InterpolationMode

resize = Resize(size=100)
resize = Resize(size=100,
                interpolation=InterpolationMode.BILINEAR,
                max_size=None,
                antialias=True)
resize
# Resize(size=[100],
#        interpolation=InterpolationMode.BILINEAR,
#        antialias=True)

resize.size
# [100]

resize.interpolation
# 

print(resize.max_size)
# None

resize.antialias
# True

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p1000_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=1000)
    # transform=Resize(size=[1000])
)

p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=10)
)

p100p180_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[100, 180])
)

p180p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[180, 100])
)

p100ms110_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100, max_size=110)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p1000_data, main_title="p1000_data")
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p50_data, main_title="p50_data")
show_images1(data=p10_data, main_title="p10_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p100p180_data, main_title="p100p180_data")
show_images1(data=p180p100_data, main_title="p180p100_data")
print()
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p100ms110_data, main_title='p100ms110_data')

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, ms=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if not s:
            s = im.size
        resize = Resize(size=s, max_size=ms) # Here
        plt.imshow(X=resize(im)) # Here
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p1000_data", s=1000)
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p50_data", s=50)
show_images2(data=origin_data, main_title="p10_data", s=10)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p100p180_data", s=[100, 180])
show_images2(data=origin_data, main_title="p180p100_data", s=[180, 100])
print()
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p100ms110_data", s=100, ms=110)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description