Making Wire Explode With 4,000 Joules of Energy

In lieu of high-explosives, an exploding wire circuit can make for an interesting substitute. As [Hyperspace Pirate] demonstrates in a recent video, the act of pumping a lot of current …read more

Jan 22, 2025 - 09:14
 0
Making Wire Explode With 4,000 Joules of Energy
The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)
The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)

In lieu of high-explosives, an exploding wire circuit can make for an interesting substitute. As [Hyperspace Pirate] demonstrates in a recent video, the act of pumping a lot of current very fast through a thin piece of metal can make for a rather violent detonation. The basic idea is that by having the metal wire (or equivalent) being subjected to a sufficiently large amount of power, it will not just burn through, but effectively vaporize, creating a very localized stream of plasma for the current to keep travelling through and create a major shockwave in the process.

This makes the exploding wire method (EWM) an ideal circuit for any application where you need to have a very fast, very precise generating of plasma and an easy to synchronize detonation. EWM was first demonstrated in the 18th century in the Netherlands by [Martin van Marum]. These days it finds use for creating metal nanoparticles, brief momentary light sources and detonators in explosives, including for nuclear (implosion type) weapons.

While it sounds easy enough to just strap a honkin’ big battery of capacitors to a switch and a piece of wire, [Hyperspace Pirate]’s video demonstrates that it’s a bit more involved than that. Switching so much current at high voltages ended up destroying a solid-state (SCR) switch, and factors like resistance and capacitance can turn an exploding wire into merely a heated one that breaks before any plasma or arcing can take place, or waste a lot of potential energy.

As for whether it’s ‘try at home’ safe, note that he had to move to an abandoned industrial site due to the noise levels, and the resulting machine he cobbled together involves a lot of high-voltage wiring. Hearing protection and extreme caution are more than warranted.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow