How NASA Employee Went from Rock Climbing to Rocket Propulsion
Jason Hopper’s journey to NASA started with assessing the risk of stepping into the unknown. One day, while taking a break from his hobby of rock climbing at Mississippi State University, a fellow student noticed Hopper reading a rocket propulsion textbook with a photo of a space shuttle launch on the cover. Rocket propulsion – […]

Jason Hopper’s journey to NASA started with assessing the risk of stepping into the unknown.
One day, while taking a break from his hobby of rock climbing at Mississippi State University, a fellow student noticed Hopper reading a rocket propulsion textbook with a photo of a space shuttle launch on the cover.
Rocket propulsion – the technology that propels vehicles into space, usually through liquid rocket engines or solid rocket motors – is a highly complex field. Engineers rigorously test the propulsion systems and components to understand their capabilities and limitations, ensuring rockets can safely reach space.
“A guy just walked up and randomly said, ‘Hey, my dad works testing rocket engines,’” Hopper recalled.
Hopper, an aerospace engineering student at the time, did not know about NASA’s Stennis Space Center near Bay St. Louis, Mississippi. He soon would learn more.
The fellow student provided him with contact information, and the rest is history.
A Meridian, Mississippi, native, Hopper graduated from Mississippi State in 2007 and made his way to America’s largest rocket propulsion test site in south Mississippi.
On the other side of Hopper’s risk of stepping into the unknown came the reward of realizing how far he had come from reading about rocket propulsion work to contributing to it.
The career highlight happened when Hopper watched a space shuttle launch, powered in part by an engine he had fired up as a test conductor working at NASA Stennis.
“You cannot really put it into words because it permeates all through you, knowing that you are a part of something that big while at the same time, you are just a little piece of it,” he said.
Hopper transitioned from his contractor position to a civil servant role as test conductor when he joined NASA in 2011.
His work as a test conductor throughout all the NASA Stennis test areas and as test director at the E Test Complex has benefited NASA and industry, while giving him a good perspective on the value of the center’s work.
Among the projects he has played a large role in include the J-2X engine test program, build up for NASA’s SLS (Space Launch System) core stage hot fire ahead of the successful Artemis I launch and multiple projects throughout the E Test Complex.
“We offer operational excellence that I would argue you cannot get anywhere else,” Hopper said. “NASA Stennis is a smaller, family-oriented center renowned for excellence in rocket propulsion testing. It is a small place, where we do amazing things.”
Propulsion test customers at NASA Stennis include government and commercial projects. The NASA center is engaged in two projects to support the agency’s SLS rocket – testing of RS-25 engines to help power SLS launches and of NASA’s new exploration upper stage to fly on future missions to the Moon.
Current commercial companies conducting work at NASA Stennis include Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. Three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite.
After leaving south Mississippi for a four-year stint at NASA’s Marshall Spaceflight Center in Huntsville, Alabama, Hopper returned to NASA Stennis as risk manager of NASA’s Rocket Propulsion Test Program Office.
In his day-to-day work, Hopper assesses risk around two questions – what is the risk and what do I really need to be focusing on?
Making decisions through this filter helps the Poplarville, Mississippi, resident make the best use of the agency’s rocket propulsion test assets, activities, and resources.
“With a risk perspective, if things are high risk, we need to address these items and focus our attention on them,” Hopper said. “If we lose a national test capability, that impacts more than just NASA; it impacts the nation because NASA is a significant enabler of commercial spaceflight.”
Hopper helps oversee the maintenance and sustainment of propulsion test capabilities across four sites – NASA Stennis; NASA Marshall; NASA’s Neil Armstrong Test Facility in Sandusky, Ohio; and NASA’s White Sands Test Facility in Las Cruces, New Mexico.
By establishing and maintaining world-class test facilities, the agency’s Rocket Propulsion Test Program Office ensures that NASA and its partners can conduct safe, efficient, and cost-effective rocket propulsion tests to support the advancement of space exploration and technology development.
Hopper looks to the future with optimism.
“We have an opportunity to redefine kind of what we as NASA and NASA Stennis do and how we do it,” he said. “Before, we were trying to help commercial companies figure things out. We were trying to get them up and going, but now we are in more of a support role in a lot of ways and so if you look at it, and approach it the right way, it can be very exciting.”