Production post-mortem: Inspecting ourselves to death

The problem was that this took time - many days or multiple weeks - for us to observe that. But we had the charts to prove that this was pretty consistent. If the RavenDB service was restarted (we did not have to restart the machine), the situation would instantly fix itself and then slowly degrade over time. The scenario in question was performance degradation over time. The metric in question was the average request latency, and we could track a small but consistent rise in this number over the course of days and weeks. The load on the server remained pretty much constant, but the latency of the requests grew.That the customer didn’t notice that is an interesting story on its own. RavenDB will automatically prioritize the fastest node in the cluster to be the “customer-facing” one, and it alleviated the issue to such an extent that the metrics the customer usually monitors were fine. The RavenDB Cloud team looks at the entire system, so we started the investigation long before the problem warranted users’ attention.I hate these sorts of issues because they are really hard to figure out and subject to basically every caveat under the sun. In this case, we basically had exactly nothing to go on. The workload was pretty consistent, and I/O, memory, and CPU usage were acceptable. There was no starting point to look at.Those are also big machines, with hundreds of GB of RAM and running heavy workloads. These machines have great disks and a lot of CPU power to spare. What is going on here?After a long while, we got a good handle on what is actually going on. When RavenDB starts, it creates memory maps of the file it is working with. Over time, as needed, RavenDB will map, unmap, and remap as needed. A process that has been running for a long while, with many databases and indexes operating, will have a lot of work done in terms of memory mapping.In Linux, you can inspect those details by running:$ cat /proc/22003/smaps 600a33834000-600a3383b000 r--p 00000000 08:30 214585 /data/ravendb/Raven.Server Size: 28 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Rss: 28 kB Pss: 26 kB Shared_Clean: 4 kB Shared_Dirty: 0 kB Private_Clean: 24 kB Private_Dirty: 0 kB Referenced: 28 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB FilePmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB Locked: 0 kB THPeligible: 0 VmFlags: rd mr mw me dw 600a3383b000-600a33847000 r-xp 00006000 08:30 214585 /data/ravendb/Raven.Server Size: 48 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Rss: 48 kB Pss: 46 kB Shared_Clean: 4 kB Shared_Dirty: 0 kB Private_Clean: 44 kB Private_Dirty: 0 kB Referenced: 48 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB FilePmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB Locked: 0 kB THPeligible: 0 VmFlags: rd ex mr mw me dwHere you can see the first page of entries from this file. Just starting up RavenDB (with no databases created) will generate close to 2,000 entries. The smaps virtual file can be really invaluable for figuring out certain types of problems. In the snippet above, you can see that we have some executable memory ranges mapped, for example.The problem is that over time, memory becomes fragmented, and we may end up with an smaps file that contains tens of thousands (or even hundreds of thousands) of entries.Here is the result of running perf top on the system, you can see that the top three items that hogs most of the resources are related to smaps accounting.This file provides such useful information that we monitor it on a regular basis. It turns out that this can have… interesting effects. Consider that while we are running the scan through all the memory mapping, we may need to change the memory mapping for the process. That leads to contention on the kernel locks that protect the mapping, of course. It’s expensive to generate the smaps fileReading from /proc/[pid]/smaps is not a simple file read. It involves the kernel gathering detailed memory statistics (e.g., memory regions, page size, resident/anonymous/shared memory usage) for each virtual memory area (VMA) of the process. For large processes with many memory mappings, this can be computationally expensive as the kernel has to gather the required information every time /proc/[pid]/smaps is accessed.When /proc/[pid]/smaps is read, the kernel needs to access memory-related structures. This may involve taking locks on certain parts of the process’s memory managem

Jan 19, 2025 - 20:06

The problem was that this took time - many days or multiple weeks - for us to observe that. But we had the charts to prove that this was pretty consistent. If the RavenDB service was restarted (we did not have to restart the machine), the situation would instantly fix itself and then slowly degrade over time.

The scenario in question was performance degradation over time. The metric in question was the average request latency, and we could track a small but consistent rise in this number over the course of days and weeks. The load on the server remained pretty much constant, but the latency of the requests grew.

That the customer didn’t notice that is an interesting story on its own. RavenDB will automatically prioritize the fastest node in the cluster to be the “customer-facing” one, and it alleviated the issue to such an extent that the metrics the customer usually monitors were fine. The RavenDB Cloud team looks at the entire system, so we started the investigation long before the problem warranted users’ attention.

I hate these sorts of issues because they are really hard to figure out and subject to basically every caveat under the sun. In this case, we basically had exactly nothing to go on. The workload was pretty consistent, and I/O, memory, and CPU usage were acceptable. There was no starting point to look at.

Those are also big machines, with hundreds of GB of RAM and running heavy workloads. These machines have great disks and a lot of CPU power to spare. What is going on here?

After a long while, we got a good handle on what is actually going on. When RavenDB starts, it creates memory maps of the file it is working with. Over time, as needed, RavenDB will map, unmap, and remap as needed. A process that has been running for a long while, with many databases and indexes operating, will have a lot of work done in terms of memory mapping.

In Linux, you can inspect those details by running:


$ cat /proc/22003/smaps


600a33834000-600a3383b000 r--p 00000000 08:30 214585                     /data/ravendb/Raven.Server
Size:                 28 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                  28 kB
Pss:                  26 kB
Shared_Clean:          4 kB
Shared_Dirty:          0 kB
Private_Clean:        24 kB
Private_Dirty:         0 kB
Referenced:           28 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:         0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:    0
VmFlags: rd mr mw me dw
600a3383b000-600a33847000 r-xp 00006000 08:30 214585                     /data/ravendb/Raven.Server
Size:                 48 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                  48 kB
Pss:                  46 kB
Shared_Clean:          4 kB
Shared_Dirty:          0 kB
Private_Clean:        44 kB
Private_Dirty:         0 kB
Referenced:           48 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:         0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:    0
VmFlags: rd ex mr mw me dw

Here you can see the first page of entries from this file. Just starting up RavenDB (with no databases created) will generate close to 2,000 entries. The smaps virtual file can be really invaluable for figuring out certain types of problems. In the snippet above, you can see that we have some executable memory ranges mapped, for example.

The problem is that over time, memory becomes fragmented, and we may end up with an smaps file that contains tens of thousands (or even hundreds of thousands) of entries.

Here is the result of running perf top on the system, you can see that the top three items that hogs most of the resources are related to smaps accounting.

This file provides such useful information that we monitor it on a regular basis. It turns out that this can have… interesting effects. Consider that while we are running the scan through all the memory mapping, we may need to change the memory mapping for the process. That leads to contention on the kernel locks that protect the mapping, of course.

It’s expensive to generate the smaps file

Reading from /proc/[pid]/smaps is not a simple file read. It involves the kernel gathering detailed memory statistics (e.g., memory regions, page size, resident/anonymous/shared memory usage) for each virtual memory area (VMA) of the process. For large processes with many memory mappings, this can be computationally expensive as the kernel has to gather the required information every time /proc/[pid]/smaps is accessed.

When /proc/[pid]/smaps is read, the kernel needs to access memory-related structures. This may involve taking locks on certain parts of the process’s memory management system. If this is done too often or across many large processes, it could lead to contention or slow down the process itself, especially if other processes are accessing or modifying memory at the same time.

If the number of memory mappings is high, and the frequency with which we monitor is short… I hope you can see where this is going. We effectively spent so much time running over this file that we blocked other operations.

This wasn’t an issue when we just started the process, because the number of memory mappings was small, but as we worked on the system and the number of memory mappings grew… we eventually started hitting contention.

The solution was two-fold. We made sure that there is only ever a single thread that would read the information from the smaps (previously it might have been triggered from multiple locations).  We added some throttling to ensure that we aren’t hammering the kernel with requests for this file too often (returning cached information if needed) and we switched from using smaps to using smaps_rollup instead. The rollup version provides much better performance, since it deals with summary data only.

With those changes in place, we deployed to production and waited. The result was flat latency numbers and another item that the Cloud team could strike off the board successfully.